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Solar flares are often accompanied by filament/prominence eruptions (∼ 104 K and ∼ 1010−11

cm−3), sometimes leading to coronal mass ejections (CMEs) that directly affect the Earth’s

environment1, 2. ‘Superflares’ are found on some active solar-type (G-type main-sequence)

stars3–5, but the association of filament eruptions/CMEs has not been established. Here we

show that our optical spectroscopic observation of the young solar-type star EK Draconis re-

veals the evidence for a stellar filament eruption associated with a superflare. This superflare

emitted a radiated energy of 2.0×1033 erg, and blue-shifted hydrogen absorption component

with a large velocity of −510 km s−1 was observed shortly after. The temporal changes in the

spectra greatly resemble those of solar filament eruptions. Comparing this eruption with so-

lar filament eruptions in terms of the length scale and velocity strongly suggests that a stellar

CME occurred. The erupted filament mass of 1.1 × 1018 g is 10 times larger than those of

the largest solar CMEs. The massive filament eruption and an associated CME provide the

opportunity to evaluate how they affect the environment of young exoplanets/young Earth6

and stellar mass/angular-momentum evolution7.

Solar flares, filament eruptions, and CMEs are thought to be caused by the common magne-
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tohydrodynamic process, though all of them are not necessarily observed in the same event. Mag-

netic reconnection is a key energy release mechanism for flares, which are thought to be sometimes

be triggered by the instability of cool filaments in active regions1. Recently, it has been discussed

that much larger “superflares” that release the energy of more than 1033 erg (10 times the largest

solar flares ∼ 1032 erg) can occur – or have occurred relatively recently – even on the Sun3–5, 8.

Superflares may produce much larger CMEs than the largest solar flares, which can significantly

affect the environment, habitability, and development of life around young and intermediate age

stars6. However, superflares on solar-type stars have been mainly detected by optical photometry

(e.g., Kepler space telescope)3. Therefore, no observational indication of filament eruptions/CMEs

has been reported for solar-type stars. Optical spectroscopic observations are a promising way to

detect stellar filament eruptions, which can be indirect evidence of CMEs. However, for solar-type

stars, optical spectra of superflares have never been obtained.

EK Draconis (EK Dra) is known to be an active young solar-type star (a G-type, zero-age

main-sequence star with an effective temperature of 5560–5700 K and age of 50–125 million

years9) that exhibits frequent UV stellar flares10, 11 and gigantic starspots at low-high latitudes9.

We conducted optical spectroscopic monitoring of EK Dra for 19 nights between 21 January 2020

and 15 April 2020, simultaneously with optical photometry from the Transiting Exoplanet Sur-

vey Satellite (TESS)12. Time-resolved neutral-hydrogen Hα-line spectra at 6562.8 Å (radiation

from cool plasma of a few times 10,000 K) were spectroscopically observed at the 3.8-m Seimei

Telescope13 and the 2-m Nayuta Telescope. In this campaign, we succeeded in obtaining optical

spectra of large superflares on a solar-type star. The superflare that occurred on 5 April 2020 was
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simultaneously observed using TESS photometry in white light (∼6,000–10,000 Å) and ground-

based spectroscopy in Hα line (Fig. 1a-b and Extended Data Fig. 1). The Hα brightening was

associated with the TESS white-light flare, which lasted 16 ± 2 min. The radiated bolometric en-

ergy of the TESS white-light flare is estimated to be 2.0±0.1×1033 erg (20 times the most energetic

solar flares), and the radiated Hα-line energy was 1.7±0.1×1031 erg; thus, the flare is classified as

a superflare.

After the impulsive phase, the TESS white-light intensity returned to its pre-flare level. How-

ever, the equivalent width (hereafter E.W.) of Hα (the wavelength-integrated Hα emission normal-

ized by the continuum level) became lower than the pre-flare level (i.e., it displayed enhanced

absorption), returning to the pre-flare level in approximately 2 hours (Fig. 1b). The blue-shift Hα

absorption component with a maximum central velocity of about −510 km s−1 and a half-width of

±220 km s−1 appeared soon after the superflare. The velocity gradually slowed down with time,

and a red-shifted absorption component appeared at a few times 10 km s−1 (Fig. 1c-e, Extended

Data Fig. 2a, 3a). Both ground-based spectroscopic observations simultaneously recorded the

same spectral change, demonstrating that low-temperature and high-density neutral plasma above

the stellar disk moves at high speed toward the observer before some parts finally start to fall back

to the surface. In addition, the deceleration is not monotonic: it was 0.34±0.04 km s−2 in the

initial phase, dropping to 0.016±0.008 km s−2 in the later phase (Fig. 1c-d and Extended Data

Fig. 3b). This is interpreted in terms of changes in the height of the ejected mass. The observed

deceleration is in good agreement with that due to the surface gravity of approximately 0.30±0.05

km s−2 (ref.9), although the initial value is slightly larger.
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How much do the stellar spectral changes obtained here actually resemble those of solar

filament eruptions? Blue-shifted Hα absorption profiles are often observed from solar filament

eruptions1, 14. As in Fig. 2, we generated spatially-integrated Hα spectra of a solar flare/filament

eruption that occurred on the solar disk using the SMART data15 (Extended Data Fig. 4, Supple-

mentary Movie 1). We converted to the full-disk pre-flare subtracted spectra by multiplying by

the partial-region/full-disk ratio (i.e., virtual Sun-as-a-star spectra). We found that the blue-shifted

absorption component at approximately 100 km s−1 was predominant soon after the solar flare,

and the spatially integrated Hα E.W. showed enhanced absorption (Fig. 2a). These blue-shifted

profiles are unequivocally due to the filament eruption. Later, the blue-shifted component decel-

erated and gradually turned into slow, red-shifted absorption (Fig. 2b-c). The Hα E.W. returned

to the pre-flare level in approximately 40 min (Fig. 2a). Although the energy scales and veloc-

ities are different, the solar data greatly resembles the spectral changes in the superflare on EK

Dra (see Supplementary Information for another event). This similarity suggests that the stellar

phenomenon is the same as the simply magnified picture of the solar filament eruption.

A filament eruption is the only explanation for the blue-shifted absorption component on EK

Dra by solar analogy1. The hypothesis that the blue-shifted absorption on EK Dra might come from

up-/down-flow in flare kernels must be rejected because they never show Hα absorption16, 17. Also,

down-flow in cooled magnetic loops (known as post-flare loops)14 show red-shifted absorption, so

they cannot explain the blue-shifted absorption. (However, the red-shifted absorption in EK Dra

in the later phase might be caused by post-flare loops14.) Rotational visibilities of prominences or

spots also are not adequate to explain it since the rotation speed of EK Dra is only 16.4±0.1 km
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s−1 (ref.9). Thus, we concluded that we detected a stellar filament eruption on the solar-type star.

Some observational signatures for stellar filament eruptions or CMEs have been reported

previously for cooler K-M dwarfs18–21, 23 and evolved giant stars22 (see Methods and ref.6, 24 for

review). The observation of a giant star shows a blue-shifted X-ray emission line of 90 km s−1

in the post-flare phase and hotter-CME is proposed as a possible explanation22. Recently, X-

ray/EUV dimmings are reported as an indirect evidence of stellar CMEs on K-M dwarfs23. In M-

dwarf flares, many blue-shifted Balmer/UV line emission components have been reported18–21, 24,

which are interpreted as filament eruptions. Some M-dwarf flares share properties similar to the

eruption on EK Dra: the blue-shift emissions have high velocities of hundreds of km s−1, and

some exhibit velocity changes and appear after the impulsive phase20, 21. For M-dwarf events, the

number of studies reporting highly-time-resolved velocity variations of blue-shift components is

still insignificant (∼5-min cadence), and simultaneous white-light flare has never been detected.

Our detection of a stellar filament eruption is reliable because we provided solar counterparts,

highly time-resolved spectra (∼50-sec cadence), and simultaneous TESS white-light flare.

What properties does the filament eruption on EK Dra have? The maximum observed veloc-

ity of the blue-shifted component was ∼ −510 km s−1 with a width of 220 km s−1. This is larger

than the typical velocities of solar filament eruptions (10–400 km s−1) associated with CMEs2,

although it is a little smaller than the escape velocity at the surface on EK Dra (∼670 km s−1).

The cool plasma reached at least ∼1.0 stellar radii from the stellar surface (or the initial height) as

derived by integrating the velocity over time (or ∼3.2 stellar radii from the stellar surface based
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on the deceleration rates). In this case, the projection angle can be allowed at most 45◦ when we

assume the event occurs on the disk center. On this projection angle, the velocity can be up to

∼ −720 km s−1, so there is a possibility that the velocities of some components of the EK Dra

eruption could exceed the escape velocity. However, it should be noted that there are weak red-

shifted components with a velocity of a few 10 km s−1 in the late phase, indicating some materials

fell back to the star. This is often observed in the case of solar filament eruptions with CMEs25.

The filament area is estimated to be 1.6×1021 cm2 (5.6 % of the stellar disk), and the erupted

mass is calculated to be 1.1+4.2
−0.9×1018 g based on the absorption components. The mass is more

than 10 times larger than those of the largest solar CMEs28, 29 (it should be noted that the mass can

be somewhat under-/over-estimated, see Methods). This mass estimate is in reasonable agreement

with those predicted from empirical28, 29, and theoretical30 solar scaling relations between CME

mass and flare energy within the error bars (∼ 9.4+3.2
−2.4 × 1016 and 3.1+1.6

−1.1 × 1017 g for ref.29 and

ref.28, respectively) (Fig. 3a). This suggests that the stellar filament eruption can share the com-

mon underlying mechanism with smaller-scale filament eruptions/CMEs (i.e., magnetic energy

release1, 30) although the absolute values of most physical quantities are very different.

Moreover, the kinetic energy is calculated to be 3.5+14.0
−3.0 ×1032 erg, which is 16 % of radiation

energy in white light. The magnetic energy stored around the starspots on EK Dra can be at least

8.0×1035 erg, which is enough to produce superflares and filament eruptions with energy of ∼1033

erg. In addition, this value is slightly smaller than those extrapolated from the solar CME scaling

law (4.8+1.1
−0.9×1033 erg; ref.29) (Fig. 3b), which is similar to the filament eruption/CME candidates
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on other stars24. In previous studies, it has been argued that kinetic energy can be reduced by

overlaying magnetic fields24, 27. The deceleration of our events was a few times 10 % larger than

the stellar gravity (Extended Data Fig. 3b). The strong magnetic fields on EK Dra were reported

before9 and may support the above explanations. However, its small kinetic energy can also be

understood through a solar analogy: The velocities of (lower-lying) filament eruptions are usually

4-8 times slower than those of the corresponding (higher-lying) CMEs2, and therefore the kinetic

energies of filament eruptions are typically smaller (green symbols in Fig. 3b).

Did a CME occur in this event? Obviously, the line-of-sight velocity ∼510 km s−1 was

slower than the escape velocity and some masses fell back, which may indicate a so-called “failed”

filament eruption27. However, this does not necessarily mean that a CME did not occur, again by

solar analogy. In fact, the erupted filaments often fall back to the Sun while CMEs happen. For

example, a well-studied solar event on 2011 June 7 involved a 200-600 km/s filament eruption

where lots of filamentary material fell back to the Sun, but some mass clearly escapes as a CME

with velocities of ∼1000 km s−1 (see ref.25 and Supplementary Information). The event on EK

Dra may correspond to this solar event. In addition, ref.26 showed that whether a solar filament

eruption leads to a CME can be simply distinguished by a parameter of (Vr max/100 km s−1)

(L/100 Mm)0.96, where Vr max is the maximum radial velocity and L is the length scale (Fig. 4).

When the parameter is more than ∼ 0.8, the probability that a filament eruption lead to a CME

is more than 90%26. The value of the parameter of eruption on EK Dra is ∼18, meaning that our

detection of the fast and sizeable stellar filament eruption is indirect evidence that mass escapes

into interplanetary space as a CME.
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Finally, we summarize future directions of our findings (see Supplementary Information for

details): It is speculated that the filament eruptions/CMEs associated with superflares can severely

affect planetary atmospheres6. Our findings can therefore provide a proxy for the possible enor-

mous filament eruptions on young solar-type stars and the Sun, which would enable us to evaluate

the effects on the ancient, young Solar-System planets and the Earth, respectively. Further, it is

also speculated that stellar mass loss due to filament eruptions/CMEs can more significantly affect

the evolutionary theory of stellar mass, angular momentum, and luminosity7, 28, than stellar winds.

At present, frequency and statical properties of CMEs on solar-type star is unknown, but important

insights into these points are obtained by increasing the samples in the future.
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Fig. 1: Light curves (a-b) and spectra (c-e) of a superflare on EK Dra. (a) The light curve observed by TESS in white light (∼6000–

10,000 Å) on BJD (Barycentric Julian Day) 2458945.2 (5 April 2020). The individual points represent the stellar flux normalized by

the averaged value with the pre-flare level subtracted. The 1-σ value of the pre-flare light curve (-150 min to 0 min) is plotted in blue.

(b) Light curves of the Hα equivalent width (E.W.) observed by the medium-dispersion spectroscopy MALLS at the Nayuta telescope

(grey circles) and the low-dispersion spectrograph KOOLS-IFU installed at the Seimei telescope (red triangles) during the same

observing period as in panel (c). The Hα emissions were integrated within ±10 Å from the Hα line center (6562.8 Å) after dividing

by the continuum level, and the pre-flare level is subtracted. The positive and negative values represent emission and absorption,

respectively, compared to the pre-flare level. The 1-σ value of the pre-flare light curve (-150 min to 0 min) is plotted with red and

black color for Seimei and Nayuta data, respectively. (c-d) Two-dimensional Hα spectra obtained by the Seimei Telescope (c) and the

Nayuta Telescope (d). The red and blue colors correspond to emission and absorption, respectively. The dashed lines indicate the

stellar surface gravity (g∗) and half of the surface gravity (0.5 g∗). The panels (c-d) share the upper color bar. (e) Temporal evolution of

the pre-flare-subtracted Hα spectra observed by the Seimei telescope (red) and the Nayuta telescope (black), with the spectra shifted

by constant values for clarity. The spectra are binned in time, and the integration periods correspond to the horizontal axes of panels

(a-d). The intensities are normalized by the stellar continuum level. The vertical dotted line indicates the Hα line center, and the

horizontal dotted lines indicate the zero levels for each spectrum. The 1-σ error bar around the line core is also plotted based on the

residual scattering in the line wing.
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Fig. 2: The space-integrated light curves (a) and spectra (b-c) of a C5.1-class solar flare and filament eruption on 7 July,

2016, observed with the SDDI installed at the SMART telescope. (a) GOES soft X-ray (1-8 Å) and Hα E.W. light curves of the solar

flare are plotted as a blue dashed line and red circles, respectively. The Hα emissions were integrated within ±1.5 Å from the Hα line

center (6562.8 Å) and were divided by the full-disk continuum level, and the pre-flare level is subtracted. Time 0 is the time when the

flare begins. (b) Two-dimensional pre-flare-subtracted Hα spectra. The red and blue colors correspond to emission and absorption

compared to the pre-flare levels, respectively. The dashed line indicates surface gravity at the solar surface. (c) Temporal evolution of

the pre-flare-subtracted Hα spectrum shifted vertically by constant values for clarity. The Hα spectra were produced by integrating the

data over a large enough region to cover the flaring area (see Extended Data Fig. 4). The intensities are normalized by the total solar

continuum level. The vertical dotted line indicates the Hα line center, and the horizontal dotted lines indicate the zero levels for each

spectrum.
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Fig. 3: Mass and kinetic energy as a function of flare energy for solar and stellar flares and filament eruptions/CMEs. (a)

Comparison between bolometric flare energy and ejected mass. The red square represents the superflare on EK Dra, the black

crosses denote for solar CME data, the green triangles are data for solar prominence/filament eruptions and surges taken from

previous studies, and the green plus sign signifies the solar filament eruption/surges displayed in Fig. 2 and Supplementary Fig. 9

(Supplementary Information “Velocity, mass, and kinetic energy: solar data”), respectively (see Table 1). Note that solar “surges” are

jet-like filament eruption phenomena (see Supplementary Information section “Another case of solar flares on 2 April 2017” for the

explanation of the surge). The cyan dashed, and magenta dotted lines are trend fits for solar CMEs expressed as MCMEs ∝ E0.59

andMCMEs ∝ E0.7, respectively (see Supplementary Information section “Solar flare energy-CME mass relation” and and ref.28,29).

(b) Comparison between flare bolometric energy and kinetic energy of the erupted mass. The symbols are the same as in panel (a).

The cyan dashed line is a fit for solar CMEs expressed as EKin ∝ E1.05
X . The kinetic energy of eruption on EK Dra is calculated to be

3.5+14.0
−3.0 ×1032 erg, which is outside the error range of the predicted value of 4.8+1.1

−0.9×1033 erg; ref.29.
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√
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CMEs derived by ref.26. The threshold can be expressed as (Vr max/100 km s−1) (L/100 Mm)0.96 = 0.8, which is determined by

using the algorithm of Linear Support Vector Classification (see ref.26 for the detailed method).
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Date GOES flare energy mass kinetic energy reference event

yyyy/mm/dd [1029 erg] [g] [erg]

1980/10/30 C4.8 4.5 1014−15 3.14×1028 Ref.43 surge

2001/8/30 C5.8 5.5 - 1.4×1027 Ref.44 surge

1993/5/14 M4.4 44 1015 1.5×1029 Ref.45 filament eruption

2012/2/11 C2.7 2.7 4×1011−13 2×1028 Ref.46 filament eruption

2016/7/7 C5.1 5.1 1.3×1015 7.7×1028 Event-1 filament eruption

2017/4/2 C8.0 8.0 5.1×1014 8.5×1027 Event-2† surge

† The analysis of the solar surge (Event-2) is described in Supplementary Information section

“Another case of solar flares on 2 April 2017”.

Table 1: Properties of solar filament eruptions/surges reported in previous studies and

this study. The data are plotted in Figure 3. The calculation of flare energy, mass, and

kinetic energy is introduced in Supplementary Information section “Velocity, mass, and

kinetic energy: solar data”.
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Methods

TESS light-curve analysis TESS observed EK Dra (TIC 159613900) in its sector 14-16 (18 July

2019-6 October 2020) and 21-23 (21 January 2020-15 April 2020). The TESS light curve from

the 2-min time-cadence photometry was processed by the Science Processing Operations Cen-

ter pipeline, a descendant of the Kepler mission pipeline based at the NASA Ames Research

Center12, 31. Extended Data Fig. 1 shows the light curve of the EK Dra from BJD (Barycentric

Julian Day) 2458945 (= JD 2458944.997 = 5 April 2020 11:56UT; Sector 23), and the stellar su-

perflare detected by TESS, Seimei telescope, and Nayuta telescope in Fig. 1 is indicated with the

red arrow in this figure. The quasi-periodic brightness variation is thought to be caused by the

rotation of EK Dra with the asymmetrically-spotted hemisphere3, 5. The rotation period is reported

as about 2.8 days9. Although the superflare occurred near the local brightness maximum, some of

the starspots are expected to be visible from the observer34–37. In Extended Data Fig. 1, other flares

are also indicated with black arrows with more than two consecutive observational points whose

flaring amplitude is more than 3 times TESS photometric errors3, 32. The white-light flare energy

was calculated by assuming the 10,000 K blackbody spectra32, 33 (see, Supplementary Informa-

tion section “Flare energy”). The pixel-level data analysis is shown in Supplementary Information

section “TESS pixel-level data analysis”. The estimated flare occurrence frequency of superflares

(> 1033 erg) in the TESS band was about once per 2 days, which means that about-twelve-nights

monitoring observations are necessary on average to detect one superflare from the ground-based

telescope under the clear-sky ratio of 50 %. This implies that our datasets are highly unique.

15



Spectroscopic data analysis Here, we present the utilization of low-resolution spectroscopic data

from KOOLS-IFU38 (Kyoto Okayama Optical Low-dispersion Spectrograph with optical-fiber In-

tegral Field Unit) of the 3.8-m Seimei Telescope13 at Okayama Observatory of Kyoto University

and MALLS19, 39 (Medium And Low-dispersion Long-slit Spectrograph) of the 2-m Nayuta Tele-

scope at Nishi-Harima Astronomical Observatory of University of Hyogo. KOOLS-IFU is an

optical spectrograph with a spectral resolution of R (λ/∆λ) ∼ 2,000 covering a wavelength range

from 5800 to 8000 Å; it is equipped with Ne gas emission lines for wavelength calibration and in-

strument characterization. The exposure time was set to be 30 sec for this night. The sky spectrum

was subtracted by using the sky fibers for each spectrum. The data reduction follows the prescrip-

tion in ref.40. During this observation, the signal-to-noise ratio (S/N) for one frame is typically

172±6. The observations by Seimei Telescope ended just after 133.7 min in Fig. 1b-d.

MALLS is optical spectroscopy with a spectral resolution of R ∼ 10,000 at the Hα line

covering a wavelength range from 6350 to 6800 Å; it is also equipped with Fe, Ne, and Ar gas

emission lines for wavelength calibration and instrument characterization. The sky spectrum was

subtracted using a nearby region along the slit direction for each observation. The exposure time

was set to be 3 min for this night. The MALLS data reduction follows the prescription in ref.19.

The signal-to-noise ratio (S/N) for one frame is typically 86±8 during this observation. For the

MALLS data, the wavelength corrections are also performed for each spectrum by using the Earth’s

atmospheric absorption lines.

We corrected the wavelength for the proper motion velocity of −20.7 km s−1 of EK Dra

based on Gaia Data Release 2 (ref.41). Continuum levels are defined by fitting with the linear line
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between the wavelength range of Hα line wing (6517.8-6537.8 and 6587.8-6607.8 Å). We take

the continuum level as the wavelength range of 6517.8-6537.8 and 6587.8-6607.8 Å to measure

the E.W. (=
∫

(1 − Fλ/F0)dλ, where F0 is the continuum intensity on either side of the absorption

feature, while Fλ represents the intensity across the entire wavelength range of interest). The

original spectra are shown in Supplementary Information section “Stability of pre-flare spectra”.

Extended Data Fig. 2 shows the pre-flare-subtracted Hα spectra during and after the superflare on

EK Dra with higher time cadence than Fig. 1e. The narrow-band Hα E.W. (Hα - 10 Å ∼ Hα +

10 Å) is used for the measurements of the radiated energy and duration of Hα flare because of the

high S/N, and the broad-band Hα E.W. (Hα - 20 Å ∼ Hα + 10 Å) is used for the measurements of

the amount of absorption (i.e., mass and kinetic energy).

Solar data analysis In the main text, we showed the data of a C5.1-class solar flare (i.e., the peak

GOES soft X-ray flux FGOES is 5.1×10−6 W m−2, hereafter “Event-1”) and associated filament

eruption around 07:56 UT, 7 July 2016 observed by the SDDI (Solar Dynamics Doppler Imager)15

installed on the SMART (the Solar Magnetic Activity Research Telescope) at Hida Observatory

(further explanations continue to the Supplementary Information “Solar data analysis (continued

from Methods)”). The SDDI conducted a monitoring observation of the Sun on 7 July 2016. It

takes full-disk solar images at 41 wavelength points at every 0.5 Å from the Hα line center −9.0

Å (−411 km s−1) to the Hα line center +8.0 Å (411 km s−1), while it takes the images at every

0.25 Å from the Hα line center -2.0 Å (-91 km s−1) to the Hα line center +2.0 Å (91 km s−1).

Each set of images is obtained with a time cadence of 20 seconds and a pixel size of about 1.2

arcsec. The SDDI started the daily monitoring observations in 2016, and the C5.1-class solar flare

17



is one of the largest solar flares with a filament eruption among the events observed by SDDI with

good weather conditions in these 5 years. The solar filament eruption was also reported in ref.15, 42.

Another jet-like filament eruption (known as solar “surge”1) associated with a C8.0-class solar flare

is also shown in the Supplementary Information section “Another case of solar flares on 2 April

2017” (hereafter we call this surge “Event-2”).

This paper used 70-min time series of the SDDI images taken from 07:30 UT on 7 July 2016

(see, Supplementary Movie 1). As in Extended Data Fig. 4, the C5.1-class flare occurred around an

active region, named “NOAA 12561”, on the solar disk and was accompanied by a typical filament

eruption15, 42. The spectra from the event are integrated over a spatial region that is large enough

to cover the visible phenomena (the magenta region in Extended Data Fig. 4a-b). The spectra are

reconstructed by using the template solar Hα spectrum convolved with SDDI instrumental profile.

Here, we define L(λ, t,A) as a luminosity at a wavelength of λ and time of t which is

integrated for the region A (i.e., L(λ, t,A) =
∫
A I(t) dA, I(t) is intensity). We now define Alocal

as the integration region (magenta region in Extended Data Fig. 4a-b), and Afull−disk as the solar

full disk. We first obtained the local (partial-image) pre-flare subtracted spectra ∆Slocal which are

normalized by local (partial-image) total continuum level (L(6570.8Å, t, Alocal)):

∆Slocal =
L(λ, t, Alocal) − L(λ, t0, Alocal)

L(6570.8Å, t, Alocal)
, (1)

where t0 is a given time of the pre-flare period. Then, the (virtual) full-disk pre-flare-subtracted

spectra ∆Sfull−disk are obtained by multiplying the ratio of the partial-image continuum to full-disk
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continuum (total continuum ratio:

∆Sfull−disk = ∆Slocal ×
L(6571.8Å, t0, Alocal)

L(6570.8Å, t0, Afull−disk)
, (2)

then we obtained a virtual pre-flare-subtracted spectrum of this phenomena as if we observed the

Sun as a star.

The E.W. of the Hα is also calculated by using the full-disk-normalized and pre-flare-subtracted

spectra (∆Sfull−disk), and we obtained the virtual Sun-as-a-star ∆Hα E.W. (i.e., differential Hα flux

normalized by the full-disk continuum level).

Velocity, mass, and kinetic energy: stellar data For the stellar filament eruption, the velocity is

derived by fitting the absorption spectra obtained by Seimei telescope with the normal distribution

N(λ, µ, σ2) where µ is the mean wavelength and σ2 is the variance. In Extended Data Fig. 3a, we

plotted the temporal evolution of the velocity ((µ−λ)/λ× c, where λ is 6562.8 Å, c is light speed)

for the fitted absorption feature with the width of σ. We only plotted the data whose absorption

features are clear enough to fit the shape with the threshold of the fitted absorption amplitude

> 0.01 and fitted velocity dispersion of < 500 km s−1 and > 100 km s−1. The threshold was

determined by trial and error, and we find that many missed detections of absorption features occur

when we select threshold values other than this one. The amplitude value of 0.01 corresponds to

the detection limit when considering the typical S/N∼170 of the Seimei Telescope/KOOLS-IFU,

and the lower limit of 100 km s−1 is determined to avoid detecting the sharp noisy signals. About

27% of data points were discarded due to this threshold from the initial points (22 min) to final

points (110 min), especially for the latter decaying phase. Here, the maximum observed velocity
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and its errors are calculated as 510±120 km s−1 with its width of 220±90 km s−1 from the mean

values of the µ and σ of the first five points (t = 22-26 min in Fig. 1), respectively. The mean

values of the velocity when the absorption becomes strong (t = 25-50 min in Fig. 1) is estimated

as 258 km s−1.

The plasma mass is simply calculated from the total Hα E.W.. We used the simple Becker’s

cloud model49 with optical depth at the line center of the ejected plasma τ0 of 5 (which is slightly

more optically thick than solar filament eruptions; c.f., ref.50), the two-dimensional aspect ratio

of 1 (i.e., cubic), local plasma dispersion velocity W of 20 km s−1, and source function S of 0.1

based on the solar observations48. The observed half width of 220 km s−1 of the stellar blue shifted

component is larger by one order of magnitude than the solar value, but here we use the solar

value as a template. The dispersion velocity of 220 km s−1 is considered to be the upper limit of

the local velocity dispersion because the ejected mass would have the complex two-dimensional

velocity distribution which can cause larger W in the integrated spectra. First, modeled E.W. of

enhanced absorption is calculated by using the Becker’s cloud model when the plasma velocity

vshift is −258 km s−1 as

model E.W. =
∫
λ

Iλ − I0λ
I0,Cont.

dλ =
∫
λ

S − I0λ
I0,Cont.

(
1 − e−τλ

)
dλ (3)

τλ = τ0exp

−1

2

(
λ/λ0 − (1 + vshift/c)

W/c

)2
 , (4)

where I0λ is background intensity and I0,Cont. is continuum intensity. This is the E.W. value for

an extreme case when the full disk of the star is completely covered with absorbing, cool ejected

plasma. By comparing the modeled E.W. (Eq. 3) with the lowest observed stellar E.W. value
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of −0.16 Å (integrated for Hα - 20 Å ∼ Hα + 10 Å; see Supplementary Fig. 4c), the cool-

plasma filling factor compared to the stellar disk is calculated to be 5.9 % of stellar disk (i.e., mod-

eled E.W./observed E.W.; Area = 1.6×1021 cm2). Using the length scale of the ejected plasma

3.9×1010 cm (= Area0.5), the hydrogen column density is derived as 4.0×1020 cm−2 from the as-

sumed optical depth based on the plasma model51. In the model of ref.51, hydrogen/electron density

is calculated by assuming an ionization equilibrium for a population of hydrogen atoms due to a

balance between recombination and radiative photoionization through Balmer/Lyman continuum.

It should be noted that the ionization equilibrium of filaments on active stars may be somewhat

different from the solar observations due to their high UV radiations, which may affect the evalu-

ation of the mass of the ejecta. By multiplying the hydrogen column density by the filament area,

we then obtained the plasma mass of 1.1×1018 g. If the two-dimensional aspect ratio becomes 0.1

similar to jet-like feature (x-width:y-width:z-depth = 1:0.1:0.1), then the estimated mass becomes

larger by a factor of 1.78. If optical depth ranges from 0.8 to 10 (ref.50), the source function takes

values of 0.02 or 0.5, and the dispersion velocity takes 10 or 220 km s−148, the estimated masses

change by a factor of from 0.15 to 4.9. In Fig. 3a, we used the mass of 1.1+4.2
−0.9×1018 g for optical

depth of 5, and uncertainties of the model (0.15-4.9) are used as the error bars since the model-

based errors are expected to be much larger than the observational errors. It should be noted that

this mass estimate could be either a significant overestimate of the mass of an affiliated CME due

to most of the filament falling back to the star, or it could be a significant underestimate due to

most of the CME actually being hot coronal material rather than cool filament. The plasma kinetic

energy is then calculated as 3.5+14.0
−3.0 ×1032 erg by using the velocity of 258 km s−1. The observed
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maximum velocity was 510 km s−1 in the early phase, so the kinetic energy can be larger by a

factor of 4 although the absorption component was weak at that time.

Related works on candidates of stellar filament eruptions/CMEs on other types of stars Here,

we discuss potential stellar filament eruptions/CMEs reported in the previous studies (see6, 24, 86 for

review). In other stars, such as M-type stars18–21, 21, 53–61, K-type stars52, T-Tauri stars62, 66, close

binaries67, 71, and giant stars22, some observational candidates of stellar filament eruptions/CMEs

have been reported, although confirmations of filament eruptions/CMEs in analogy with solar ob-

servations are still rare. We also note that some other studies have tried to detect a signature of

stellar filament eruptions/CMEs in various ways but have not succeeded in robust detection73–80.

A signature of CME was reported from a blue-shifted emission component of the cool X-ray

O VIII line (4 MK) in the late phase of stellar flare on an evolved giant star HR 902422. Although

the time evolution of the blue-shifted velocity is not obtained there, they detected the blue-shifted

emission component with a velocity of 90 km s−1 (the escape velocity 220 km s−1) and interpreted

it as a CME. The blue-shifted plasma components with a few MK are also emitted from the upward

flow in the confined flare loops (called “chromospheric evaporation”) in the case of solar flares,

but they exclude the possibility considering that the other hotter lines do not show the blue-shifted

component in the post-flare phase. Although the spectral-type of HD 9024 (evolved giant star)

is very different from EK Dra and the velocity (90 km s−1) is smaller than our observation (510

km s−1), both observations share the same trend that mass ejection signatures is dominant in the

post-flare phase.
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Blue-shifted emission components of chromospheric lines have been reported in association

with the Balmer-line flares mostly on active M/K dwarfs18–21, 52–61 (see ref.24, 50 for the summary).

The time-varying blue-shifted hydrogen emission components have also been reported with high

time cadence on M dwarfs (e.g., ref.19, 21). A similar case is reported for a UV flare on an M

dwarf20, 70. These can be possible evidence of stellar prominence eruptions/CMEs. It seems quite

possible that the blue-shifted emission lines on M-dwarfs are very analogous to the Hα absorption

signatures studied in this paper. The fundamental differences between G-dwarf and M-dwarf blue-

shift signature is that for hotter G dwarfs, Hα in an erupting filament will only be detectable in

absorption, whereas for the cooler M dwarfs even the quiescent Hα line is in emission, so an

erupting filament might be observed in emission as well (cf. ref.50). Blue-wing enhancements

of M-dwarf flares is characterized by the high velocity of several hundred km s−1 (sometimes

more than that)18, 53, 53, 60, which cannot be explained by chromospheric-line blue-shift phenomena

associated chromospheric evaporation flow observed in solar flares16, 50, 81–84. The high velocity of

M-dwarf flares are similar to that detected on EK Dra in this study (∼510 km s−1). In addition,

not all but some of the blue-shift events on M dwarfs appear after the impulsive phase20, 21, which

shares the same properties with filament eruption events on EK Dra and the Sun in this study.

Therefore, at present the blue-shifted emission lines in M-type stars are most likely prominence

eruptions.

Other signatures of kinematic characteristics of the ejected plasma are also inferred from con-

tinuous X-ray absorption during stellar flares, which can be caused by neutral material above the

flaring region, such as filament eruptions24, 63–69. However, on the Sun, X-ray absorption by promi-
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nences is uncommon50, 85, and instrumental calibration effects at low energy have been pointed

out86.

In some cases of binary stars, eclipses of the white dwarf component have been interpreted as

obscuration by stellar mass ejected from the late-type companion star71, 72. Other than this, pre-flare

dips have been reported in stellar flares, suggesting potential prominence eruptions/CMEs87, 88. Ra-

dio observations have recently investigated the type-II radio bursts associated with shocks in front

of CMEs as possible indirect evidence of CMEs, but no significant signature has been obtained

so far74–80, 86. Recently, a stellar type-IV burst event from the M-type star Proxima Centauri was

reported and may be evidence for a stellar CME61.

Data availability In addition to the figure data available, all raw spectroscopic data are available

either in the associated observatory archive (https://smoka.nao.ac.jp/index.jsp for KOOLS-

IFU data in Figure 1 (available after Jan 2022); https://www.hida.kyoto-u.ac.jp/SMART/T1.

html for a part of SDDI data in Figure 2) or upon request from the corresponding author (for

MALLS data in Figure 1 and full raw data of SDDI). The TESS light curve is available at the

MAST archive (https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html). All

datasets used to make figures are available online.
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Extended Data Fig. 1: Global TESS light curve for EK Dra. (a) Light curve of a superflare on EK Dra observed by TESS from

BJD 2457000. The gap before about BJD 2458945 days corresponds to a gap in the data downlink with Earth during the spacecraft’s

perigee. The arrows indicate stellar flares that occurred during this observational period, but the other flares in this figure were not

observed by ground-based spectroscopic observations. The red arrow is the superflare shown in Fig. 1. (b) Enlarged light curve

indicated with the red dotted box in panel (a). The cyan dashed line is the global trend of the light curve caused by the stellar rotation

with large starspots.
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Extended Data Fig. 2: Pre-flare-subtracted Hα spectra during and after the superflare on EK Dra with higher time cadence

than panel (e) in Fig. 1. (a, b) The red and black lines are the data observed by the Seimei Telescope and the Nayuta Telescope. The

spectra are binned in time, and the integration periods correspond to the horizontal axes of panel (a-d) in Fig. 1. The intensities are

normalized by the stellar continuum level. The vertical dotted line indicates the Hα line center, and the horizontal dotted lines indicate

the zero levels for each spectrum. The 1-σ values for the line center are indicated with red (Seimei Telescope) and black (Nayuta

Telescope) error bars for each time bin. The 1-σ values are basically calculated by the scattering in line wing (6522.8 - 6532.8 Å and

6592.8 - 6602.8 Å).
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Extended Data Fig. 3: Temporal evolution of the velocity and deceleration for the Hα-line absorption features. (a) The blue

points indicate the velocity of the Hα-line absorption features seen after a superflare. The spectra observed by Seimei Telescope

were used considering the high S/N and the absorption features are obtained by fitting them with a normal-distribution function. The

error bars indicate the standard deviation of the fitted normal distribution. The green dashed line indicates the exponential function

which fits the blue symbols, and the magenta dotted line indicates the velocity evolution of the free fall. (b) The temporal evolution of

deceleration rates is derived from the velocity changes for observation and free-fall model in panel (a).
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Extended Data Fig. 4: A solar flare on 7 July, 2016, observed by SMART telescope/SDDI at Hida observatory. (a) A full disk

image of the Sun at the Hα line wing (6554.8 Å). The horizontal and vertical axes indicate the x-y axes in the unit of the image pixels

whose size is about 1.2 arcsec. The green region is a quiet region used as a reference to make the Hα spectra. (b) the blue region is

the enlarged panel of the active region 12561. The magenta is the region where the solar flare and filament eruption happened. (c)

The temporal evolution of solar images in the magenta region at a wavelength of 6560.8 (−91 km s−1), 6561.8 (−46 km s−1), 6562.8

(0 km s−1), 6563.8 Å (+46 km s−1). The emission and absorption features are indicated with white and black, respectively. The movie

is available in Extended Data Movie 1.
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